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Note S1 Weight normalization and quantization. 

To convert the transfer function of photonic devices into the weight values used in 

neural networks, a normalization process is required. Here, we use the measured results 

of the Mach-Zehnder Interferometer (MZI) from Figure 2 as an example.

 

Figure S1. Transfer function of MZI and corresponding quantized weight values. 

 

The left part of Figure S1 shows the transfer function of the balanced MZI from Figure 

2, with an input power of 10 dBm. The applied voltage is selected within the range of 

approximately 2 to 6 V, which is sufficient to achieve a large modulation depth. The 

maximum output 𝑉𝑚𝑎𝑥 is about 0.73V and the minimμm output 𝑉𝑚𝑖𝑛 is about 0.17V. 

The normalized weight value 𝑊  corresponding to a specific output 𝑉𝑜𝑢𝑡  can be 

calculated using Equation (1): 

𝑊 =
𝑉𝑜𝑢𝑡 − 𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛

(1) 

Using Equation (1), the weights are normalized between 0 and 1, but they remain float 

numbers with an unavoidable noise level. In conventional photonic neural networks, 

quantization methods are commonly applied to mitigate noise effects. 

The right part of Figure S1 illustrates the 4-bit quantized weight values of the MZI. 

Uniform quantization is employed, dividing the weights into 16 equally spaced 

intervals between 0 and 1. The weight value of the nth state is given by 
𝑛−1

16
.    
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Note S2 Micro-ring resonator (MRR) and MZI of photonic random number 

generator (PRNG). 

 

Figure S2. Optical microscopic image of MZI and MRR in the PRNG. (a) Image of the 

Silicon MZI. The length of both arms is 300μm. The width of Silicon waveguides is 

0.45 μm. (b) Image of AlN/Si MRR. The radius of the ring is 50 μm. The gap between 

ring and bus waveguide is 0.4 μm. The width of AlN waveguides is 1 μm.    
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Note S3 Output distribution of MZI and MRR  

In our study, the noise observed in the optical device outputs is primarily induced by 

electrical noise during the modulation process. This electrical noise—such as thermal 

noise and shot noise—exhibits an approximately Gaussian distribution in the time 

domain. This modulated signal with noise can lead to variations in the refractive index 

change of photonic devices, which can also be approximated as a Gaussian distribution 

in the time domain. As a result, the output distributions of our photonic devices, 

influenced by this modulation fluctuation, also approximate Gaussian distributions. 

Figure S3 illustrates the measured output distributions of the thermo-optic MZI and 

electro-optic MRR used in this work, sampled 200 times under their respective 

modulation conditions. These distributions can be well-fitted by Gaussian functions. In 

our analysis, both the output mean (μ) and standard deviation (σ) of the device outputs 

are extracted using Gaussian fitting of the measured output histograms. 

Moreover, due to the closed-form mathematical properties of the Gaussian distribution, 

when the MZI and MRR are combined to form a PRNG, the resulting output—

effectively a product of the two transmission functions—also follows an approximate 

Gaussian distribution. 

 

Figure S3. Output distributions of MZI and MRR in this work. The output influenced 

by electrical noise can be well fitted by Gaussian distributions.  
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Note S4 Simulation of spectrum shift induced by effective index fluctuation 

 

Figure S4. Simulation of modulation-induced noise of MRR. (a) Reconstructed MRR 

spectrum. (b), (c) and (d) Noise level of MRR output under various wavelengths, with 

same refractive index fluctuation.  

 

We conducted simulations to verify the noise characteristics of the MRR. Based on the 

20 dB extinction ratio and a quality factor of 45,000 from the MRR spectrum in Figure 

2, the propagation loss was estimated to be approximately 1 dB/cm using Equation 

(2):

𝛼 =
𝜆∗10 log(𝑒)

𝑄𝑖∗𝑟∗𝐹𝑆𝑅
(2) 

Here, 𝑄𝑖 the intrinsic quality factor, is approximated as twice the quality factor under 

conditions of large extinction ratio (critical coupling). With a ring radius of 50μm and 

a measured free spectral range (FSR) of 3.695, the group index 𝑛𝑔 was derived using 

Equation (3): 
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𝑛𝑔 =
𝜆2

𝐹𝑆𝑅 ∗ 𝐿
(3) 

Where 𝐿 is the round-trip length of MRR. The calculated group index is about 2.14, 

and the effective index of the AlN waveguide obtained via simulation, is about 1.706. 

Using these parameters, the spectrum was reconstructed with MATLAB simulations, as 

shown in Figure S4(a). 

The wavelength noise in the MRR originates from effective index fluctuations caused 

by unstable applied voltages. The effective index change 𝛥𝑛𝑒𝑓𝑓  is related to the 

resonance shift 𝛥𝜆𝑟𝑒𝑠 by Equation (4): 

𝛥𝑛𝑒𝑓𝑓 =
𝛥𝜆𝑟𝑒𝑠 ∗ 𝑛𝑔 

𝜆𝑟𝑒𝑠

(4) 

For a resonance peak tunability of 0.26 pm/V, the corresponding effective index change 

is about 3.544 × 10−7/𝑉 . oonsidering the driving voltage noise level of 2V, the 

standard deviation of the effective index change is about 7 × 10−7. 

By incorporating this noise into the effective index, we simulated the spectrum shift 

induced by the noise. Sampling the transmission at different wavelengths near 

resonance allowed us to derive the output noise levels at various wavelengths, as shown 

in Figure S4(b), (c), and (d). The simulations reveal that noise levels increase as the 

output wavelength approaches the resonance wavelength, consistent with experimental 

results.  
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Note S5 Measurement of noise without applied voltage 

 

Figure S5. MRR Output of different wavelengths without applied voltage. 

 

To measure wavelength noise from laser fluctuations and intensity noise from fiber 

alignment variations, we optimized fiber alignment in a stable testing environment and 

measured the output of the MRR without applied voltage. Two wavelengths (1577.29 

nm and 1577.31 nm) were selected for testing. Although their output intensities differ 

significantly, the noise level remains nearly identical at approximately 0.002 V for both. 

Thus, wavelength and intensity noise in the absence of applied voltage are negligible 

compared to the electro-optical noise introduced by modulation voltage. 
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Note S6 PRNG implementation based on another MRR (R=50μm, Gap=0.35μm) 

 

Figure S6. Uncertainty measurement of another all-pass MRR with different device 

parameters. (a) Uncertainty measured by spectrum scan. The applied voltage on the 

MRR is also 20V. (b) Voltage scan method for uncertainty measurement. The 

wavelength of input laser is fixed at 1577.33nm. The applied voltage scans from -100V 

to 100V. (c) MRR output with different applied voltage and input power. (d) Fitted 

mean and standard deviation of MRR output in (c). 

 

To verify the universality of the method proposed in this article, we conducted 

uncertainty measurements on an additional all-pass MRR with different device 

parameters. In this device, the ring radius is 50 μm, and the gap between the ring and 

bus waveguide is 0.35 μm. Both the voltage scan and spectrum scan methods 

demonstrate the same output characteristics as those reported in the main text, 

specifically the inverse correlation between output light intensity and noise level.  
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Figure S7. 𝜇𝑜𝑢𝑡 and 𝜎𝑜𝑢𝑡 modulation of the PRNG based on another MRR. (a) 𝜇𝑜𝑢𝑡 

independent modulation. (b) 𝜎𝑜𝑢𝑡 independent modulation (c) Relationship between 

𝜎𝑜𝑢𝑡  and applied voltage on MRR and MZI (d) Relationship between 𝜇𝑜𝑢𝑡  and 

applied voltage on MRR and MZI. 

 

A new PRNG can be realized by combining the MRR presented here with an MZI, 

allowing it to perform similar functions to the one described in the main text. Although 

the controllable ranges and values of μ and σ differ slightly between the two PRNGs, 

these variations can be managed by establishing lookup tables and setting parameters 

during network training.  
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Note S7 Design principles of the PRNG crossbar array 

As the schematic in Figure 3 shows, the matrix used for probabilistic matrix-vector 

multiplication operations can be implemented using a crossbar array structure 

integrated with directional couplers, following the design principles.[1] To provide a 

more detailed explanation of how this array architecture functions and how it can be 

scaled, we take a 2×2 array as an example to illustrate how the optical signal is evenly 

distributed to each PRNG cell for computation. 

 

Figure S8. 2×2 PRNG crossbar array for probabilistic matrix-vector multiplication. 

 

The horizontal directional couplers are responsible for distributing the input optical 

power equally across the matrix columns, while the vertical directional couplers collect 

the modulated signals from the PRNG cells and perform optical signal accumulation. 

Each input vector entry interacts with only one PRNG cell per matrix column. This 

interaction represents a single multiplication between the optical input amplitude and 

the distributed weight encoded by the PRNG cell. The accumulated optical power at 
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each column output is detected by a photodetector, representing the inner product of the 

input vector and the corresponding weight column. The resulting signal is scaled by a 

fixed factor of 1/(𝑀 ×  𝑁), where M and N denote the number of columns and rows 

in the matrix, respectively. 

To prevent optical interference between the outputs of different PRNG cells in the same 

column—an issue that could degrade output accuracy—this work employs wavelength-

division multiplexing (WDM). Specifically, incoherent light sources at different 

wavelengths are used for different rows in the PRNG array. This strategy ensures that 

the outputs from various PRNG cells remain independent and interference-free, 

allowing accurate detection of the output distribution by the column photodetectors. 

Regarding the directional coupler design, the splitting ratios for the horizontal couplers 

are determined by the column index m and are given by 
1

𝑀+1−𝑚
. With such splitting 

ratios, the split power for each column can be calculated as 
1

𝑀
. The splitting ratios for 

the vertical couplers can be calculated as 
1

𝑛
 with n being the number of the matrix row. 

oonsequently, the optical power received at the output of column m from row n is: 
1

𝑀
∗

1

𝑛
∗ (1 −

1

𝑛+1
) ∗ (1 −

1

𝑛+2
) ∗ ∙∙∙ ∗ (1 −

1

𝑁
) =

1

𝑀∗𝑁
, which is balanced across all PRNG 

cells. 

The individual control of each device within the array can be achieved through the 

design of on-chip metal routing combined with off-chip control electronics. This is a 

well-established technique and has been widely implemented in most current photonic 

neural networks, enabling independent tuning of each photonic element on the chip. 

Additionally, thanks to continuous advancements in photonic integrated circuit (PIo) 

technology, the optical loss of photonic devices has been significantly reduced, making 

the large-scale implementation of crossbar arrays increasingly feasible. For example, 

the largest demonstrated MRR crossbar array to date is a 16×16 array with an 800 µm 

pitch, as reported in Nanophotonics 12.20 (2023): 3883–3894.[2] 

Regarding crosstalk, in the case of electro-optic (EO) modulation, the influence of the 

electric field from one device on its neighbours is minimal, allowing the crosstalk 
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between devices to be safely neglected. In contrast, thermo-optic (TO) modulation 

introduces thermal crosstalk due to heat conduction when the spacing between devices 

is too small. This issue can be effectively mitigated by appropriately increasing the 

spacing between adjacent devices. For instance, in Optica 9.5 (2022): 579–584, [3] a 

1×4 MRR array was demonstrated with a spacing of approximately 100 µm between 

the rings, achieving low thermal crosstalk and a high tuning accuracy of 9 bits through 

the use of a dithering control scheme. 

Together, these strategies ensure the feasibility of scalable, low-crosstalk PRNG arrays 

suitable for integration in large-scale PBNNs. 
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Note S8 Accuracy degradation of deterministic neural network because of noise 

impact 

 

Figure S9. MNIST classification accuracy of classical deterministic neural network 

models with various quantization bits. The blue line shows the corresponding PoNN’s 

performance under the noise impact. 

 

When conventional neural networks utilize higher quantization bits or full-precision 

floating-point representations for weights, the expressiveness of the parameter space 

increases, leading to improved model accuracy. While quantization can mitigate noise 

by mapping unstable outputs to discrete levels, overly coarse quantization—such as 1- 

or 2- bit representations—limits the model’s ability to capture complex features. As 

shown by the black curve in Figure S9, even in the absence of noise, low-bit quantized 

models exhibit reduced accuracy (below 0.9) on relatively simple tasks like MNIST 

classification. When the quantization level reaches 3 bits or more, the accuracy 

approaches that of full-precision models (~0.98), indicating sufficient expressive 

capacity for such tasks. 
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When noise impact is considered, it becomes challenging for conventional models to 

achieve ideal accuracy. The blue line in Figure S9 illustrates the accuracy of quantized 

conventional models under noise impact. We use the μ-σ relationship of PRNG in 

Figure 2 to model the noise impact in PoNNs. High-bit models, which rely on precise 

parameters for feature characterization, are more sensitive to weight fluctuations. For 

example, the accuracy of an 8-bit high-precision model drops from 0.98 to 0.86 due to 

the noise impact. For low-quantization models, errors will still accumulate and 

influence the final output during matrix-vector multiplication. Moreover, low-precision 

models are inherently limited in feature extraction, and error accumulation exacerbates 

this issue. In the case of a 1-bit binary neural network, while the accumulated noise may 

not significantly alter its output state, its accuracy remains very low. 

There are methods to improve the intrinsic accuracy of low-bit models, such as 

increasing the weight matrix size or introducing batch normalization layers with high-

precision parameters. However, these approaches essentially compensate for the 

missing parameter dimensions in low-quantization networks. Thus, whether using high 

or low quantization models, significant accuracy loss occurs in PoNNs due to model 

precision limitations and noise influence. 
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Note S9 Output distribution of photonic classical neural network (PCNN) on 

MNIST and F-MNIST inputs 

 

Figure S10. Output of photonic classical neural network. Here we consider the impact 

of noise. (a) Output distribution of input ‘9’. (b) Output distribution of input ‘8’. (c) 

Output distribution of outlier input ‘Trousers’. (d) Output distribution of outlier input 

‘Pullover’. 

 

This figure supplements the main text, showing the output distribution of the PoNN for 

both MNIST and F-MNIST inputs. Due to noise, the PoNN output becomes uncertain 

for any type of input. For MNIST (expected) inputs, the output with the highest 

frequency generally, though not always, corresponds to the correct label. However, for 

F-MNIST (unexpected) inputs, the PoNN’s output distribution resembles that of 

MNIST inputs, displaying uncertainty and a "confident" output with high frequency. 

This similarity in output distribution makes it difficult to distinguish between outliers 

and expected inputs based on the PoNN’s output alone. 
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Note S10 PCNN’s performance difference under various noise levels 

 

Figure S11. Output distribution of PoNN under various noise levels. 

 

We further tested the PoNN under half and double the original noise level. Here, we 

also use the 3-bit quantized model from Figure 3, which achieves accuracy comparable 
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to the full-precision model under ideal (noise-free) conditions. As shown in Fig. S11, 

with lower noise, classification accuracy increases to 95%, and the outputs are more 

concentrated, deviating less from the dominant label. In contrast, at double the noise 

level, outputs become more scattered, though still centered around the dominant class. 

This shows that noise in PoNN induces output variability, but does not reflect input 

uncertainty of the dataset. The deterministic nature of PoNN still leads to overconfident 

predictions for unseen data. 
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Note S11 Output distribution of photonic Bayesian neural network (PBNN) on 

MNIST and F-MNIST inputs 

 

Figure S12. Output of PBNN. We also consider the impact of noise. (a) Output 

distribution of input ‘9’. (b) Output distribution of input ‘8’. (c) Output distribution of 

outlier input ‘Trousers’. (d) Output distribution of outlier input ‘Pullover’. 

 

For the PBNN trained on the MNIST dataset, the outputs for MNIST inputs remain 

very stable across multiple samples, consistently pointing to the correct label. The 

probability score for the correct label is very high (close to 1), while the scores for other 

labels are extremely low (near 0). 

In contrast, for F-MNIST inputs, the PBNN exhibits much greater uncertainty. Almost 

every label has a non-zero output frequency, but the probability score for each label 

remains quite low, typically below 0.2. This clear difference in output distribution 

enables easy identification of outliers by observing the PBNN’s responses. 
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Note S12 Output probability score and standard deviation of PBNN on SV dataset 

expected inputs 

 

Figure S13. Output probability score and standard deviation of PBNN on SV dataset. 

(a) Output of label VIII. (b) Output of label II. 

 

Here, we use the average probability score and fitted standard deviation of the PBNN’s 

output across 200 samples. For the SV dataset, the PBNN output consistently shows a 

high probability score (close to 1) for the correct label. Probability score and standard 

deviation are inversely correlated: outputs with higher probability scores have smaller 

standard deviations, and vice versa. 
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Note S13 Additional output distributions of PBNN 

Figure S14 shows representative output distributions for inputs of different classes 

from the MNIST dataset. As can be observed, for inputs that are visually distinct and 

easy to classify, nearly all 200 samples fall on the correct label, and the average output 

probability score for that label approaches 1. 

Of course, the MNIST dataset also contains ambiguous or low-quality images. For 

instance, the second and third samples in the third row of the figure illustrate a "3" that 

resembles an "8" and a "5" that resembles a "6", respectively. In these cases, the PBNN 

occasionally outputs similar but incorrect labels during the 200 samplings—analogous 

to how a human might also misclassify such ambiguous images. We selected 200 

samplings as it provides a sufficiently accurate representation of the output distribution. 

As a further validation, the final row of Figure S14 shows the output distribution for 

the same inputs with the number of samplings increased to 400. The results confirm 

that the PBNN remains highly confident for expected inputs. 

In contrast, for out-of-distribution inputs from the Fashion-MNIST dataset, the PBNN 

consistently produces highly uncertain and disordered output distributions. Figure S15 

illustrates several such examples, where the predicted probability scores are low and 

dispersed across multiple labels. This behavior is observed for both 200 and 400 

sampling iterations, highlighting the PBNN’s ability to detect unfamiliar inputs and 

appropriately express low confidence and high uncertainty in its predictions. 
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Figure S14. Output distributions of the PBNN with various input images. For clearly 

distinguishable inputs, the PBNN produces highly confident and accurate predictions. 

For ambiguous inputs, the network assigns the probable labels based on similarity to 

the training data, while also providing a corresponding probability that reflects this 

similarity. In this work, 200 sampling iterations were used, which are sufficient to 

capture the output distribution for each input image. Increasing the number of samples 

to 400 does not significantly alter the distribution, indicating the robustness and stability 

of the probabilistic predictions. 
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Figure S15. Output distributions of the PBNN with outlier inputs. Regardless of 

whether 200 or 400 samplings are performed, the PBNN consistently exhibits a 

dispersed and low-confidence output distribution for out-of-distribution inputs. 
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Note S14 Difference between classical neural network and BNN 

 Classical neural network Bayesian neural network 

Optimization Maximize likelihood Maximize posterior 

Parameters 

(i.e. weight, 

bias) 

 Fixed value Probabilistic distribution 

Inference 
Single run and choose class with 

largest output value 

Sampling distribution of output 

probability score 

Capability of 

probabilistic 

computing 

No Yes 

Hardware 

platform 
Electronic Photonic Electronic Photonic 

Principle 

Conductivity 

modulation of 

electronic 

devices[4] 

Transmission 

modulation of 

photonic 

devices[5] 

Randomness in 

the switching 

process of 

memristors[6] 

Analog nature 

of optical 

signal[7] 

Speed High Ultra-high Low High 

Energy 

consumption 
High Low High Low 

Supplementary Table 1. The difference between the classical neural network and 

BNN. Electronic and photonic implementations are compared in terms of principle and 

efficiency. The probabilistic computing capability in BNNs involves a trade-off, 

slightly sacrificing speed for enhanced uncertainty modelling and robustness. 
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Note S15 Comparison between PNNs harnessing noise for computing 

 

PBNN using 

programmed 

optical noise[8] 

Photonic 

generative 

network 

harnessing opto-

electronic noise[9] 

Probabilistic 

photonic 

computing with 

chaotic light[7] 

This work 

Random 

source 

Amplified 

spontaneous 

emission (ASE) 

ASE ASE 

Modulation-

induced 

photonic noise 

Distribution 

tunability 
 Yes No Yes Yes 

Distribution 

modulation 

method 

Separate 

modulation of μ 

and σ by MRR 

N.A. 

Adding up of 

ASE pulses with 

programmed 

intensities 

Combined 

modulation of 

μ and σ by 

MRR and MZI 

Experiment 

validation 
No Yes Yes Yes 

Capability of 

probabilistic 

computing 

Yes No Yes Yes 

Network 

operation of 

photonic parts 

Probabilistic 

fully-connected 

layer 

Deterministic 

fully-connected 

layer 

Probabilistic 

convolution layer 

Probabilistic 

fully-connected 

layer 

Scalability High High Low High 

Supplementary Table 2. Comparison of related works on PNNs utilizing noise for 

computing: principles and performance. Our work achieves a more flexible and scalable 

modulation of weight distribution in the PNN. 
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Both referenced works about PBNN utilize the signal–ASE beat noise to generate 

random distributions, which can be described by the following expression: 

 𝜎𝑠𝑖𝑔−𝐴𝑆𝐸
2 =

2𝑅2𝑃𝑠𝑖𝑔𝑃𝐴𝑆𝐸

𝑀
, where R is the responsivity of the photodetector, 𝑃𝑠𝑖𝑔 and 

𝑃𝐴𝑆𝐸  are the optical signal power and the time-averaging ASE noise power, and the M 

is a configuration constant: 𝑀 =
2𝐵𝑂

𝐵𝐿𝑃
, determined by the optical filter bandwidth 𝐵𝑂 

and the photodetector bandwidth 𝐵𝐿𝑃. From the formula describing signal–ASE beat 

noise, it can be observed that the noise level can be modulated by adjusting the optical 

signal power, assuming other factors such as ASE noise power remain constant. 

However, in this case, the mean and standard deviation of the output remain inherently 

correlated. To address this, both Wu et al.[8] and Frank et al.[7] employ fractional-step 

methods to separate the control of these two parameters. 

Wu et al. compute the mean and standard deviation in two distinct steps. For mean 

calculation, their setup resembles a conventional MRR-based PNN, where the ASE 

source is not introduced. The mean value of the weight is modulated by tuning the MRR 

transmission at the input wavelength. For standard deviation computation, the optical 

signal is combined with an ASE source, and the MRR modulates the optical signal 

power to achieve the desired noise level. The mean component of this signal is filtered 

out using a Do block, leaving only the noise component. The final weight distribution 

is obtained by combining the results from both stages. While effective in theory, this 

approach requires distinct optical paths and configurations for the mean and standard 

deviation, as well as additional ASE sources and filtering components. This adds 

complexity to the system architecture and computational process. Furthermore, 

although Wu et al. demonstrated that ASE noise level varies with signal intensity, they 

did not experimentally validate the separate computation of mean and standard 

deviation using MRRs. Therefore, device-level issues such as noise modulation and 

signal crosstalk are not fully accounted for, potentially impacting accuracy in practical 

implementations. 

Frank et al., on the other hand, split each input into nine sub-symbols and modulate the 

aggregate distribution. According to the signal–ASE beat noise model, the standard 
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deviation is proportional to the square root of the signal power. Thus, for the same total 

power, dividing the input into multiple symbols reduces the noise per symbol, enabling 

modulation of the overall distribution by adjusting individual intensities. This strategy 

effectively decouples the output noise from the total optical intensity, allowing 

independent control of the output variance. However, because the randomness is 

encoded and modulated in the input signal itself, the optical phase-change memory 

(PoM) devices in the array serve only as static weights. This limits scalability, as 

enhancing uncertainty resolution requires more optical input channels. Additionally, 

since the output distribution is derived by summing nine consecutive symbols, the need 

for multiple samplings constrains the inference speed and reduces precision. As a result, 

this architecture is more suitable for convolutional layers, where kernel reuse and 

smaller weight dimensions make this sampling approach more practical. 

In contrast, our work introduces a compact, integrated PRNG architecture based on the 

combination of an MZI and MRR, which achieves independent and continuous control 

of both mean (μ) and standard deviation (σ) within a single modulation step. This design 

significantly simplifies the computational architecture of the PBNN while improving 

scalability. Because the PRNGs can be arranged in an array to implement distributed 

weight matrices, the proposed PBNN supports large-scale probabilistic MVM 

operations, enabling it to serve not only as a convolutional layer but also as a fully 

connected layer. This enhanced flexibility and integration make our approach more 

suitable for broader, scalable applications in photonic probabilistic computing. 
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